We're sorry but NNVP doesn't work properly without JavaScript enabled. Please enable it to continue.
File
New
Load
Templates
2D Dense for MNIST
2D Conv for MNIST
Fashion MNIST
CIFAR-10 CNN
Save
Generate
Generate Javascript
Edit
Undo
Redo
Group
Training
About
Input / Output
▲
Input
Output
Core
▲
Dense
Activation
Dropout
Flatten
Reshape
Permute
RepeatVector
Lambda
ActivityRegularization
Masking
Convolutional
▲
Conv1D
Conv2D
SeparableConv1D
SeparableConv2D
Conv2DTranspose
Conv3D
Cropping1D
Cropping2D
Cropping3D
UpSampling1D
UpSampling2D
UpSampling3D
ZeroPadding1D
ZeroPadding2D
ZeroPadding3D
Pooling
▲
MaxPooling1D
MaxPooling2D
MaxPooling3D
AveragePooling1D
AveragePooling2D
AveragePooling3D
GlobalMaxPooling1D
GlobalAveragePooling1D
GlobalMaxPooling2D
GlobalAveragePooling2D
GlobalMaxPooling3D
GlobalAveragePooling3D
Locally Connected
▲
LocallyConnected1D
LocallyConnected2D
Recurrent
▲
rnn
simple_rnn
gru
lstm
conv_lstm_2d
simple_rnn_cell
gru_cell
lstm_cell
cudnn_gru
cudnn_lstm
Embedding
▲
embedding
Merge
▲
Add
Substract
Multiply
Average
Maximum
Minimum
Concatenate
Dot
Advanced Activation
▲
leaky_relu
prelu
elu
thresholded_relu
softmax
ReLU
Normalization
▲
batch_normalization
Noise
▲
gaussian_noise
gaussian_dropout
alpha_dropout
No layers selected
Dataset
Options
Charts
Train
╳
MNIST
FashionMNIST
CIFAR10
MNIST database of handwritten digits. Please provide a [28, 28, 1] input shape.